What Is Deep Learning?

Deep learning is a machine learning technique that teaches computers to do what comes naturally to humans: learn by the example. Deep learning is a key technology behind driverless cars, enabling them to recognize a stop sign or to distinguish a pedestrian from a lamppost. It is the key to voice control in consumer devices like phones, tablets, TVs, and hands-free speakers. Deep learning is getting lots of attention lately and for good reason. It’s achieving results that were not possible before.

Deep learning has evolved hand-in-hand with the digital era, which has brought about an explosion of data in all forms and from every region of the world. This data, known simply as big data, is drawn from sources like social media, internet search engines, e-commerce platforms, and online cinemas, among others. This enormous amount of data is readily accessible and can be shared through fintech applications like cloud computing.

However, the unstructured data is so vast it could take decades for humans to comprehend it and extract relevant information. Companies realize the incredible potential that can result from unraveling this wealth of information and are increasingly adapting to Artificial Intelligence systems for automated support.

In deep learning, a computer model learns to perform classification tasks directly from images, text, or sound. Deep learning models can achieve state-of-the-art accuracy, sometimes exceeding human-level performance. Models are trained by utilizing a large set of labeled data and neural network architectures that contain many layers.

Deep learning achieves recognition accuracy at higher levels than ever before. This helps consumer electronics meet user expectations, and it is crucial for safety-critical applications like driverless cars. Recent advances in deep learning have improved to the point where deep learning outperforms humans in some tasks like classifying objects in images.

Deep learning applications are used in industries from automated driving to medical devices.

Automated Driving: Automotive researchers are using deep learning to automatically detect objects such as stop signs and traffic lights. In addition, deep learning is used to detect pedestrians, which helps decrease accidents.

Aerospace and Defense: Deep learning is used to identify objects from satellites that locate areas of interest and identify safe or unsafe zones for troops.

Medical Research: Cancer researchers are using deep learning to automatically detect cancer cells. Teams at UCLA built an advanced microscope that yields a high-dimensional data set used to train a deep learning application to accurately identify cancer cells.

Industrial Automation: Deep learning is helping to improve worker safety around heavy machinery by automatically detecting when people or objects are within an unsafe distance of machines.

Electronics: Deep learning is being used in automated hearing and speech translation. For example, home assistance devices that respond to your voice and know your preferences are powered by deep learning applications.

How Deep Learning Works
Most deep learning methods use neural network architectures, which is why deep learning models are often referred to as deep neural networks.

The term “deep” usually refers to the number of hidden layers in the neural network. Traditional neural networks only contain 2-3 hidden layers, while deep networks can have as many as 150.

Deep learning models are trained by using large sets of labeled data and neural network architectures that learn features directly from the data without the need for manual feature extraction.

One of the most popular types of deep neural networks is known as convolutional neural networks (CNN or ConvNet). A CNN convolves learned features with input data, and uses 2D convolutional layers, making this architecture well suited to processing 2D data, like images.

CNNs eliminates the need for manual feature extraction, so you do not need to identify features used to classify images. The CNN works by extracting features directly from images. The relevant features are not pretrained; they are learned while the network trains on a collection of images. This automated feature extraction makes deep learning models highly accurate for computer vision tasks like object classification.

CNNs learn to detect various features of an image using tens or hundreds of hidden layers. Every hidden layer increases the complexity of the learned image features. For example, the first hidden layer could learn how to detect edges, and the last learn how to detect more complex shapes specifically catered to the shape of the object we are trying to recognize.

What’s the Difference Between Machine Learning and Deep Learning?
Deep learning is a specialized form of machine learning. A machine learning workflow starts with relevant features being manually extracted from images. The features are then used to create a model that categorizes the objects in the image. With a deep learning workflow, relevant features are automatically extracted from images. In addition, deep learning performs “end-to-end learning” – where a network is given raw data and a task to perform, like classification, and it learns how to do this automatically.

Another key difference is the deep learning algorithms scale with data, whereas shallow learning converges. Shallow learning refers to machine learning methods that plateau at a certain level of performance when you add more examples and training data to the network.

A key advantage of deep learning networks is they often continue to improve as the size of your data increases.

Choosing Between Machine Learning and Deep Learning
Machine learning offers a variety of techniques and models you can choose based on your application, the size of data you’re processing, and the type of problem you want to solve. A successful deep learning application requires a very large amount of data (thousands of images) to train the model, as well as GPUs or graphics processing units, to rapidly process your data.

When choosing between machine learning and deep learning, consider whether you have a high-performance GPU and lots of labeled data. If you don’t have either of those things, it may make more sense to use machine learning instead of deep learning. Deep learning is generally more complex, so you’ll need at least a few thousand images to get reliable results. Having a high-performance GPU means the model will take less time to analyze all those images.

Deep learning is used across all industries for a number of various tasks. Commercial apps that use image recognition, open-source platforms with consumer recommendation apps and medical research tools that explore the possibility of reusing drugs for new ailments are a few of the examples of deep learning incorporation.

Previous Post
Next Post

Leave a Reply

Your email address will not be published. Required fields are marked *